(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:① DC =" BC;" ②AD+AB=AC.请你证明结论②;
(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
解方程:x2-6x-7=0.
如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB),且OA、OB的长分别是一元二次方程x2-(+1)x+
=0的两个根.点C在x轴负半轴上,且AB:AC=1:2.
(1)求A、C两点的坐标.
(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围.
(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,说明理由.
实践操作:如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).
(1)①作∠BAC的平分线,交BC于点O;②以O为圆心,OC为半径作圆.
(2)综合运用:在你所作的图中,
①AB与⊙O的位置关系是 (直接写出答案);
②若AC=5,BC=12,求⊙O的半径.
已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),将剩余部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计)
(1)填空:EF= .cm,GH= .cm;(用含x的代数式表示)
(2)若折成的长方体盒子的表面积为950cm2,求该长方体盒子的体积
已知:如图△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于E,交BC的延长线于点F.
求证:(1)AD=BD;
(2)DF是⊙O的切线.