有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计)。有人应用数学知识作如下设计:在钢板的四个角处各切去一个全等的小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长。
(1)请你求出这种切割、焊接而成的长方体容器的最大容积
;
(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积
。
(本小题满分12分)已知向量
,
且满足
.
(1)求函数
的最大值及其对应的
值;
(2)若
,求
的值.
已知关于x的不等式
(其中
)。
(Ⅰ)当a=4时,求不等式的解集;
(Ⅱ)若不等式有解,求实数a的取值范围。
在极坐标系中,曲线
,过点A(5,α)(α为锐角且
)作平行于
的直线
,且
与曲线L分别交于B,C两点。
(Ⅰ)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线
的普通方程;
(Ⅱ)求|BC|的长。
如图,圆O1与圆O2相交于A、B两点,AB是圆O2的直径,过A点作圆O1的切线交圆O2于点E,并与BO1的延长线交于点P,PB分别与圆O1、圆O2交于C,D两点。
求证:(Ⅰ)PA·PD=PE·PC;
(Ⅱ)AD=AE。
已知函数
(I)当
的单调区间;
(II)若函数
的最小值;
(III)若对任意给定的
,使得
的取值范围。