有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计)。有人应用数学知识作如下设计:在钢板的四个角处各切去一个全等的小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长。(1)请你求出这种切割、焊接而成的长方体容器的最大容积;(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积。
如图,在四棱锥中,底面,底面是梯形,其中,,与交于点,是边上的点,且,已知,,. (1)求平面与平面所成锐二面角的正切; (2)已知是上一点,且平面,求的值.
已知等差数列满足、、成等比数列,数列的前项和(其中为正常数) (1)求的前项和; (2)已知,,求
设,其中,已知满足 (1)求函数的单调递增区间; (2)求不等式的解集。
各项为正的数列满足,, (1)取,求证:数列是等比数列,并求其公比; (2)取时令,记数列的前项和为,数列的前项之积为,求证:对任意正整数,为定值
函数, (1)若时,求的最大值; (2)设时,若对任意,都有恒成立,且的最大值为2,求的表达式.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号