设函数,其中
为自然对数的底数.
(Ⅰ)已知,求证:
;
(Ⅱ)函数是
的导函数,求函数
在区间
上的最小值.
设到定点
的距离和它到直线
距离的比是
.
(Ⅰ)求点的轨迹方程;
(Ⅱ)为坐标原点,斜率为
的直线过
点,且与点
的轨迹交于点
,
,若
,求△
的面积.
在梯形中,
,
,
,
,如图把
沿
翻折,使得平面
平面
.
(Ⅰ)求证:平面
;
(Ⅱ)若点为线段
中点,求点
到平面
的距离.
某市为了了解“陕西分类招生考试”宣传情况,从四所中学的学生当中随机抽取50名学生参加问卷调查,已知
四所中学各抽取的学生人数分别为15,20,10,5.
(Ⅰ)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;
(Ⅱ)在参加问卷调查的名学生中,从来自
两所中学的学生当中随机抽取两名学生,用
表示抽得
中学的学生人数,求
的分布列及期望值.
已知是一个单调递增的等差数列,且满足
,
,数列
的前
项和为
,数列
满足
.
(Ⅰ)求数列的通项公式;(Ⅱ)求数列
的前
项和.