如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.
思考:
如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α。
当α= 度时,点P到CD的距离最小,最小值为 。
探究一:
在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO= 度,此时点N到CD的距离是 。
探究二:
将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转。
(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;
(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的最大值。
某公司共20名员工,员工基本工资的平均数为2200元.现就其各岗位每人的基本工资情况和各岗位人数,绘制了下列尚不完整的统计图表:各岗位每人的基本工资情况统计表
岗位 |
经理 |
技师 |
领班 |
助理 |
服务员 |
清洁工 |
基本工资 |
10000 |
4000 |
2400 |
1600 |
1000 |
请回答下列问题:
(1)将各岗位人数统计图补充完整;
(2)求该公司服务员每人的基本工资;
(3)该公司所有员工基本工资的中位数是 元,众数是 元;你认为用基本工资的平均数和中位数来代表该公司员工基本工资的一般水平,哪一个更恰当?请说明理由.
(4)该公司一名员工向经理辞职了,若其他员工的基本工资不变,那么基本工资的平均数就降低了.你认为辞职的可能是哪个岗位上的员工呢?说明理由.
(1)对于a,b定义一种新运算“☆”:a☆b=2a-b,例如:5☆3=2×5-3=7.若(x☆5)<-2,求x的取值范围;
(2)先化简再求值:,其中x的值是(1)中的正整数解.
如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于点D ,DE⊥OC于E。
(1)求证:AD=DC;
(2)求证:DE是⊙O1的切线;
(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论。
一文具店购进甲、乙两种文具,甲的单价比乙的单价低10元,且用90元购进甲文具的数量与用150元购进乙文具的数量相同。
(1)求甲、乙两种文具的进货单价;
(2)若用不足2100元进甲、乙两种文具100件,再以提高20%的单价出售。销售额要不低于2500元。请设计进货方案。
学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数.