一个四边形的周长是 cm,已知第一条边的长是
cm,第二条边长比第一条边长的
倍还少
cm,第三条边长等于第一、第二条边长的和。请通过计算用含
的代数式表示第四条边的长.
(年蒙自市初中学业水平第一次模拟测试)如图,已知在平面直角坐标系中,
是坐标原点,点
在反比例函数
的图象上,过点
的直线
交
轴于点
.
(1)求和
的值;
(2)求的面积.
(年新疆乌鲁木齐市)一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程(km),小轿车的路程
(km)与时间x(h)的对应关系如图所示.
(1)甲乙两地相距多远?小轿车中途停留了多长时间?
(2)①写出与x的函数关系式;
②当x≥5时,求与x的函数解析式;
(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?
(年云南省)如图,在平面直角坐标系中,抛物线(
)与x轴相交于A,B两点,与y轴相交于点C,直线
(
)经过B,C两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
(年云南省)已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.
(1)求y与x的函数关系,并写出自变量x的取值范围;
(2)当汽车行驶了2小时时,求汽车距B地有多少千米?
(年贵州省黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/时;当车流密度为20辆/千米时,车流速度为80千米/时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.
(1)求彩虹桥上车流密度为100辆/千米时的车流速度;
(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/时且小于60千米/时,应控制彩虹桥上的车流密度在什么范围内?
(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.