掷两枚骰子,记事件A为“向上的点数之和为n”.
(1)求所有n值组成的集合;
(2)n为何值时事件A的概率P(A)最大?最大值是多少?
(3)设计一个概率为0.5的事件(不用证明)
已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据:
⑴求这个组合体的表面积;
⑵若组合体的底部几何体记为ABCD-A1B1C1D1,如图,其中A1B1BA为正方形.
①求证:A1B⊥平面AB1C1D;
②若P为棱A1B1上一点,求AP+PC1的最小值.
求经过直线与圆
的交点,且经过点
的圆的方程.
如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,M为SA的中点,N为CD的中点.⑴证明:平面SBD⊥平面SAC;⑵证明:直线MN//平面SBC.
已知椭圆>b>
的离心率为
且椭圆上一点到两个焦点的距离之和为
.斜率为
的直线
过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(1)求椭圆的标准方程;
(2)求m的取值范围.
(3)试用m表示△MPQ的面积S,并求面积S的最大值.
已知函数
(1)求函数的极值点;
(2)若直线过点(0,—1),并且与曲线
相切,求直线
的方程;
(3)设函数,其中
,求函数
在
上的最小值.(其中e为自然对数的底数)