如图示,四棱锥P----ABCD的底面是边长为1的正方形,PA^CD,PA = 1, PD = ,E为PD上一点,PE = 2ED.
(1)求证:PA ^平面ABCD;
(2)求二面角D---AC---E的正切值;
(3)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,
说明理由.
设不等式x2+y2£ 4确定的平面区域为U,ïxï+ïyï£ 1确定的平面区域为V.
(1)定义横、纵坐标为整数的点为“整点”,在区域U内任取3个整点,求这些整点中恰有2个整点在区域V的概率;
(2)在区域U内任取3个点,记这3个点在区域V的个数为X,求X的分布列和数学期望EX.
若数列{an}是等比数列,a1>0,公比q¹1,已知lna1和2+ lna5的等差中项为lna2,且a1a2 = e
(1)求{an}的通项公式;(2)设bn= (nÎN*),求数列{bn}的前n项和.
.已知函数,在点
处的切线方程
为.
(Ⅰ)求函数的解析式;
(Ⅱ)若对于区间上任意两个自变量的值
,都有
,求实数
的最小值;
(III)若过点,可作曲线
的三条切线,求实数
的取值范围
(本小题满分12分).已知椭圆的中心在原点,焦点在轴上,离心率
,一
条准线的方程为(Ⅰ)求椭圆的方程;(Ⅱ)设
,直线
过椭圆的右焦点为
且与椭圆交于、
两点,若
,求直线
的方程