在四棱锥中,底面
是正方形,若
.
(1)证明:平面 平面 ;
(2)求二面角 的平面角的余弦值.
在 中,角 、 、 所对的边长分别为 、 、 , , ..
(1)若 ,求 的面积;
(2)是否存在正整数 ,使得 为钝角三角形?若存在,求出 的值;若不存在,说明理由.
记 是公差不为0的等差数列 的前n项和,若 .
(1)求数列 的通项公式 ;
(2)求使 成立的n的最小值.
已知函数 .
(1)讨论 的单调性;
(2)设 , 为两个不相等的正数,且 ,证明: .
在平面直角坐标系 中,已知点 、 ,点 的轨迹为 .
(1)求 的方程;
(2)设点 在直线 上,过 的两条直线分别交 于 、 两点和 , 两点,且 ,求直线 的斜率与直线 的斜率之和.