(本小题满分12分)在第9届校园文化艺术节棋类比赛项目报名过程中,我校高二(2)班共有16名男生和14名女生预报名参加,调查发现,男、女选手中分别有10人和6人会围棋.
(I)根据以上数据完成以下22列联表:
|
会围棋 |
不会围棋 |
总计 |
男 |
|
|
|
女 |
|
|
|
总计 |
|
|
30 |
并回答能否在犯错的概率不超过0.10的前提下认为性别与会围棋有关?
参考公式:其中n=a+b+c+d
参考数据:
![]() |
0.40 |
0.25 |
0.10 |
0.010 |
![]() |
0.708 |
1.323 |
2.706 |
6.635 |
(Ⅱ)若从会围棋的选手中随机抽取3人成立该班围棋代表队,则该代表队中既有男又
有女的概率是多少?
(Ⅲ)若从14名女棋手中随机抽取2人参加棋类比赛,记会围棋的人数为,求
的期望.
(本小题满分10分)对于给定的函数,定义
如下:
,其中
.
(1)当时,求证:
;
(2)当时,比较
与
的大小;
(3)当时,求
的不为0的零点.
射击测试有两种方案,方案1:先在甲靶射击一次,以后都在乙靶射击;方案2:始终在乙靶射击,某射手命中甲靶的概率为,命中一次得3分;命中乙靶的概率为
,命中一次得2分,若没有命中则得0分,用随机变量
表示该射手一次测试累计得分,如果
的值不低于3分就认为通过测试,立即停止射击;否则继续射击,但一次测试最多打靶3次,每次射击的结果相互独立。
(1)如果该射手选择方案1,求其测试结束后所得分的分布列和数学期望E
;
(2)该射手选择哪种方案通过测试的可能性大?请说明理由。
解不等式
选修4-4:坐标系与参数方程[ (本小题满分10分)
己知直线 的参数方程为
(t为参数),圆C的参数方程为
.(a>0.
为参数),点P是圆C上的任意一点,若点P到直线
的距离的最大值为
,求a的值。
(选修4-2:矩阵与变换)
已知矩阵,试求曲线
在矩阵
变换下的函数解析式.