如图,渔船甲位于岛屿的南偏西
方向的
处,且与岛屿
相距12海里,渔船乙以10海里/小时的速度从岛屿
出发沿正北方向航行,若渔船甲同时从
处沿北偏东
的方向追赶渔船乙,刚好用2小时追上.
(1)求渔船甲的速度;
(2)求的值.
已知各项均为正数的数列前
项和为
,首项为
,且
成等差数列.
(1)求数列的通项公式;
(2)若,设
,求数列
的前
项和
.
已知函数为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
(1)求的值;
(2)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
已知对任意实数
恒成立;Q:函数
有两个不同的零点. 求使“P∧Q”为真命题的实数m的取值范围.
在△ABC中,角A,B,C所对的边分别为a,b,c.已知,且满足
.
(1)求角A的大小;
(2)若||+||=||,试判断△ABC的形状.
14分)已知椭圆中心在原点,焦点在x轴上,一个顶点为A(0,-1),且其右焦点到直线x-y+=0的距离为3.(I)求椭圆的方程;
(II)是否存在斜率为k(k≠0)的直线l,使l与已知椭圆交于不同的两点M、N,
且|AN|=|AM|?若存在,求出k的取值范围;若不存在,请说明理由.