如图,在三棱柱中,侧棱
底面
,
,
为
的中点,
(1)求证:平面
;
(2)过点作
于点
,求证:直线
平面
(3)若四棱锥的体积为3,求
的长度
已知是椭圆
的右焦点,圆
与
轴交于
两点,
是椭圆
与圆
的一个交点,且
(Ⅰ)求椭圆的离心率;
(Ⅱ)过点与圆
相切的直线
与
的另一交点为
,且
的面积为
,求椭圆
的方程
如图,在直三棱柱ABC-A1B1C1中,点M是A1B的中点,点N是B1C的中点,连接MN
(Ⅰ)证明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小
某地区因干旱缺水,政府向市民宣传节约用水,并进行广泛动员 三个月后,统计部门在一个小区随机抽取了户家庭,分别调查了他们在政府动员前后三个月的月平均用水量(单位:吨),将所得数据分组,画出频率分布直方图(如图所示)
动员前动员后
(Ⅰ)已知该小区共有居民户,在政府进行节水动员前平均每月用水量是
吨,请估计该小区在政府动员后比动员前平均每月节约用水多少吨;
(Ⅱ)为了解动员前后市民的节水情况,媒体计划在上述家庭中,从政府动员前月均用水量在范围内的家庭中选出
户作为采访对象,其中在
内的抽到
户,求
的分布列和期望
在中,角
所对的边分别为
,已知
,
(Ⅰ)求的大小;
(Ⅱ)若,求
的取值范围.
已知函数的定义域为
.
(I)求函数在
上的最小值;
(Ⅱ)对,不等式
恒成立,求
的取值范围.