绵阳人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.
(1)求甲种牛奶、乙种牛奶的进价分别是多少元?
(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润 售价 进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?
如图, 为 直径, 为 上一点,点 是 的中点, 于 , 于 .
(1)判断 与 的位置关系,并证明你的结论;
(2)若 ,求 的长度.
如图,直线 与 轴交于点 ,与 轴交于点 ,与反比例函数 的图象在第一象限交于 、 两点,点 为坐标原点, 的面积为 ,点 横坐标为1.
(1)求反比例函数的解析式;
(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”,请求出图中阴影部分(不含边界)所包含的所有整点的坐标.
绵阳七一中学开通了空中教育互联网在线学习平台,为了解学生使用情况,该校学生会把该平台使用情况分为 (经常使用)、 (偶尔使用)、 (不使用)三种类型,并设计了调查问卷、先后对该校初一(1)班和初一(2)班全体同学进行了问卷调查,并根据调查结果绘制成如下两幅不完整的统计图,请根据图中信息解答下列问题:
(1)求此次被调查的学生总人数;
(2)求扇形统计图中代表类型 的扇形的圆心角,并补全折线统计图;
(3)若该校初一年级学生共有1000人,试根据此次调查结果估计该校初一年级中 类型学生约有多少人.
已知如图,在平面直角坐标系 中,点 、 、 分别为坐标轴上的三个点,且 , , ,
(1)求经过 、 、 三点的抛物线的解析式;
(2)在平面直角坐标系 中是否存在一点 ,使得以点 、 、 、 为顶点的四边形为菱形?若存在,请求出点 的坐标;若不存在,请说明理由;
(3)若点 为该抛物线上一动点,在(2)的条件下,请求出当 的最大值时点 的坐标,并直接写出 的最大值.