(本小题满分14分)通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为的样本,问样本中看与不看营养说明的女生各有多少名?(2) 从(1)中的5名女生样本中随机选取两名作深度访谈, 求选到看与不看营养说明的女生各一名的概率;(3)根据以上列联表,问有多大把握认为“性别与在购买食物时看营养说明”有关?
已知等比数列前项之和为,,,求和
已知函数,,其中. (1)若是函数的极值点,求实数的值; (2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
已知 (1)当时,求函数的单调区间。 (2)当时,讨论函数的单调增区间。 (3)是否存在负实数,使,函数有最小值-3?
已知函数 (1)求曲线在点处的切线方程; (2)若关于的方程有三个不同的实根,求实数的取值范围.
设函数分别在处取得极小值、极大值.平面上点的坐标分别为、,该平面上动点满足,点是点关于直线的对称点,.求 (Ⅰ)求点的坐标; (Ⅱ)求动点的轨迹方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号