(本小题满分10分)袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球的1分,现在从袋中随机摸出4个球,
求:(1)列出所得分数X的分布列; (2)得分大于6分的概率。
(理科)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095 – 2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米 ~ 75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标。从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:
PM2.5日均值 (微克/立方米) |
[25,35] |
(35,45] |
(45,55] |
(55,65] |
(65,75] |
(75,85] |
频数 |
3 |
1 |
1 |
1 |
1 |
3 |
(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级。(精确到整数)
在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),
=(a-c,sinC-sinB),满足
=
(Ⅰ)求角B的大小;(Ⅱ)设
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值为3,求k的值.
已知函数.
(1)若,
,求证:
;
(2)若实数满足
.试求
的取值范围.
在直角坐标系中,曲线
的参数方程为
(
为参数),若以直角坐标系的原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
(其中
为常数).
(1)若曲线与曲线
只有一个公共点,求
的取值范围;
(2)当时,求曲线
上的点与曲线
上的点的最小距离.
如图,已知为锐角△
的内心,且
,点
为内切圆
与边
的切点,过点
作直线
的垂线,垂足为
.
(1)求证:;
(2)求的值.