(本小题满分10分)袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球的1分,现在从袋中随机摸出4个球,
求:(1)列出所得分数X的分布列; (2)得分大于6分的概率。
已知集合P=[,2],函数y= log2(ax2-2x+2)的定义域为Q。
(1)若PQ
,求实数a的取值范围;
(2)若方程log2(ax2-2x+2)=2在[,2]内有解,求实数a的取值范围。
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1所示的一条折线表示:西红柿的种植成本与上市时间的关系用图2所示的抛物线表示。(注:市场售价和种植成本的单位:元/102kg,时间单位:天)
(1)写出图1表示的市场售价与时间的函数关系式P=f(t);写出图2表示的种植成本与时间的函数关系式Q=g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?为多少?
图1图2
若关于x的方程4x-k2x+k+3=0无实数解,求k的取值范围。
若A={x|x2-2x-3<0},B={x|()x-a
1}
(1)当AB=
时,求实数a的取值范围;
(2) 当AB时,求实数a的取值范围
已知等差数列{an}的首项a1=1,公差d>0,且第二项,第五项,第十四项分别是等比数列{bn}的第二项,第三项,第四项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意自然数n,均有,
求c1+c2+c3+……+c2006值.