如图,矩形的边
在
的边
上,顶点
、
分别在边
、
上,
,垂足为
.已知
,
.
(1)当矩形为正方形时,求该正方形的边长;
(2)当矩形面积为18时,求矩形的长和宽.
当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,
所以抛物线顶点坐标为(m,2m-1),即x=m③,y=2m-1④.
当m的值变化时,x,y的值也随之变化,因而y的值也随x值的变化而变化.
将③代入④,得y=2x-1⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式:y=2x-1;
根据上述阅读材料提供的方法,确定点(-2m, m-1)满足的函数关系式为_______.
(2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标y与横坐标x之间的关系式.
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).
设每件商品的售价上涨元(
为正整数),每个月的销售利润为
元.
(1)求与
的函数关系式并直接写出自变量
的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
如图,直线y=3x和y=2x分别与直线x=2相交于点A、B,将抛物线y=x2沿线段OB移动,使其顶点始终在线段OB上,抛物线与直线x=2相交于点C,设△AOC的面积为S,求S的取值范围.
如图,直角△ABC中,∠C=90°,AB=2,sinB=
,点P为边BC上一动点,PD∥AB,PD交AC于点D,连结AP.
(1)求、
的长;
(2)设的长为
,
的面积为
.当
为何值时,
最大并求出最大值.
已知:如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,
求:(1)线段DC的长;
(2)tan∠EDC的值.