李明上星期买进某公司股票7000股,每股27元,下表为本周每日该股票的涨跌情况(单位:元)
星期 |
一 |
二 |
三 |
四 |
五 |
六 |
每股涨跌 |
+4 |
+4.5 |
![]() |
![]() |
![]() |
+2 |
(1) 这六天中,哪几天的股票是上涨的?哪几天的股票是下跌的?
(2)哪天股票上涨的最多?你能算出这天收盘时每股是多少元吗?
探索与研究:
方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以
∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图示写出证明勾股定理的过程;
方法2:如图(b),是任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?
如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线成轴对称的△A
;
(2)线段被直线
;
(3)在直线上找一点P,使PB+PC的长最短,并算出这个最短长度.
已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.
(1)已知x=-1,求x2+3x-1的值;
(2)已知,求
值.
已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数的图象相交于点(2,a).
(1)求a的值.
(2)求一次函数y=kx+b的表达式.
(3)在同一坐标系中,画出这两个函数的图象.