(12分) 一盒中装有分别标记着1,2,3,4的4个小球,每次从袋中取出一只球,设每只小球被取出的可能性相同.
(1)若每次取出的球不放回盒中,现连续取三次球,求恰好第三次取出的球的标号为最大数字的球的概率;
(2)若每次取出的球放回盒中,然后再取出一只球,现连续取三次球,这三次取出的球中标号最大数字为,求
的分布列与数学期望.
已知.
(1)若,求
的值;
(2)若,且
,求
的值.
已知为等差数列,且
,公差
.
(1)数列满足结论;
;试证:
;
(2)根据(1)中的几个等式,试归纳出更一般的结论,并用数学归纳法证明.
【原创】甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为
,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).
选修4 - 5:不等式选讲已知x,y,z均为正数.求证:.
在极坐标系中,圆的方程为
,以极点为坐标原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数),若直线
与圆
相切,求实数
的值.