(理)(本小题满分14分)
已知数列满足
(Ⅰ)求;(Ⅱ)已知存在实数
,使
为公差为
的等差数列,求
的值;(Ⅲ)记
,数列
的前
项和为
,求证:
.
(本小题共13分)已知动圆过定点,且与直线
相切.(1)求动圆的圆心轨迹
的方程;(2) 是否存在直线
,使
过点(0,1),并与轨迹
交于
两点,且满足
?若存在,求出直线
的方程;若不存在,说明理由.
已知曲线,从
上的点
作
轴的垂线,交
于点
,再从点
作
轴的垂线,交
于点
,设
(1)求数列的通项公式;
(2)记,数列
的前
项和为
,试比较
与
的大小
;
(3)记,数列
的前
项和为
,试证明:
已知椭圆的左、右焦点分别为
,若以
为圆心,
为半径作圆
,过椭圆上一点
作此圆的切线,切点为
,且
的最小值不小于为
.
(1)求椭圆的离心率的取值范围;
(2)设椭圆的短半轴长为,圆
与
轴的右交点为
,过点
作斜率为
的直线
与椭圆相交于
两点,若
,求直线
被圆
截得的弦长
的最大值.
已知函数的反函数为
,定义:若对给定的实数
,函数
与
互为反函数,则称
满足“
和性质”.
(1)判断函数是否满足“1和性质”,并说明理由;
(2)若,其中
满足“2和性质”,则是否存在实数a,使得
对任意的
恒成立?若存在,求出
的范围;若不存在,请说明理由.