(本题满分15分) 如图,已知正方形和矩形
所在的平面互相垂直,
,
,
是线段
的中点.
(Ⅰ)求证://平面
;
(Ⅱ)求二面角的大小;
(Ⅲ)试在线段上确定一点
,使得
与
所成的角是
.
已知函数f(x)=(ax2-2x+a)·e-x.
(1)当a=1时,求函数f(x)的单调区间;
(2)设g(x)=--a-2,h(x)=
x2-2x-ln x,若x>1时总有g(x)<h(x),求实数a的取值范围.
在平面直角坐标系xOy中,O为坐标原点,A(-2,0),B(2,0),点P为动点,且直线AP与直线BP的斜率之积为-.
(1)求动点P的轨迹C的方程;
(2)过点D(1,0)的直线l交轨迹C于不同的两点M,N,△MON的面积是否存在最大值?若存在,求出△MON的面积的最大值及相应的直线方程;若不存在,请说明理由.
设L为曲线C:y=在点(1,0)处的切线.
(1)求L的方程;
(2)证明:除切点(1,0)之外,曲线C在直线L的下方.
已知函数f(x)=x3-x,数列{an}满足条件:a1≥1,an+1≥f'(an+1).试比较
+
+
+…+
与1的大小,并说明理由.
设函数f(x)满足2f(x)-f()=4x-
+1,数列{an}和{bn}满足下列条件:a1=1,an+1-2an=f(n),bn=an+1-an(n∈N*).
(1)求f(x)的解析式.
(2)求{bn}的通项公式bn.
(3)试比较2an与bn的大小,并证明你的结论.