游客
题文

(满分14分)已知一动圆M,恒过点F(1,0),且总与直线相切,
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)在曲线C上是否存在异于原点的两点,当时,直线AB恒过定点?若存在,求出定点坐标;若不存在,说明理由.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

(本小题满分12分)
已知函数),
(Ⅰ)求函数的最小值;
(Ⅱ)已知:关于的不等式对任意恒成立;
:函数是增函数.若“”为真,“”为假,求实数的取值范围.

(本小题满分12分)
已知向量,函数
(Ⅰ)求的单调递增区间;
(Ⅱ)在中,分别是角的对边,且,且,求的值.

(本小题满分10分)【选修4—5:不等式选讲】
设函数
(I)画出函数的图象;
(II)若关于的不等式有解,求实数的取值范围.

(本小题满分12分)
已知函数在点处的切线方程为
(I)求的值;
(II)对函数定义域内的任一个实数恒成立,求实数的取值范围.

(本小题满分12分)
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点
(I)求椭圆的方程;
(II)直线与椭圆相交于两点, 为原点,在上分别存在异于点的点,使得在以为直径的圆外,求直线斜率的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号