(满分14分)已知一动圆M,恒过点F(1,0),且总与直线相切,
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)在曲线C上是否存在异于原点的两点,当
时,直线AB恒过定点?若存在,求出定点坐标;若不存在,说明理由.
某计算机程序每运行一次都随机出现一个二进制的六位数,其中
的各位数中,
,
(
2,3,4,5)出现0的概率为
,出现1的概率为
,记
,当该计算机程序运行一次时,求随机变量
的分布列和数学期望。
参考公式
![]() |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
在对人们的休闲方式的一次调查中,共调查了120人,其中女性65人,男性55人。女性中有40人主要的休闲方式是看电视,另外25人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外35人主要的休闲方式是运动。
(1)根据以上数据建立一个2×2的列联表;(2)能够以的把握认为性别与休闲方式有关系,为什么?
求二项式(-
)15的展开式中:
(1)常数项;
(2)有几个有理项;
用0,1,2,3,4,5这六个数字:
(1)能组成多少个无重复数字的四位偶数?
(2)能组成多少个无重复数字且为5的倍数的五位数?
(3)能组成多少个无重复数字且比1325大的四位数?
假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
![]() |
2 |
3 |
4 |
5 |
6 |
![]() |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
若由资料知,y对x呈线性相关关系,试求:
(1)回归直线方程;
(2)估计使用年限为10年时,维修费用约是多少?