将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;
(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.
如图,抛物线 经过 、 、 三点,点 为抛物线上第一象限内的一个动点.
(1)求抛物线所对应的函数表达式;
(2)当 的面积为3时,求点 的坐标;
(3)过点 作 ,垂足为点 ,是否存在点 ,使得 中的某个角等于 的2倍?若存在,求点 的横坐标;若不存在,请说明理由.
出关于 的一元二次方程,解之取其非零值可得出点 的横坐标.依此即可得解.
如图,正方形 中, 是对角线 上的一个动点(不与 、 重合),连结 ,将 绕点 顺时针旋转 到 ,连结 交 于点 , 延长线与边 交于点 .
(1)连结 ,求证: ;
(2)若 ,求 的值;
(3)求证: .
我们知道,任意一个正整数 都可以进行这样的分解: , 是正整数,且 ,在 的所有这种分解中,如果 , 两因数之差的绝对值最小,我们就称 是 的最佳分解.并规定: .
例如:18可以分解成 , 或 ,因为 ,所以 是18的最佳分解,所以 .
(1)填空: (6) ; (9) ;
(2)一个两位正整数 , , , 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求 的最大值;
(3)填空:
① ;② ;③ ;④ .
如图, 是 的直径, 是 上一点, 于点 ,过点 作 的切线,交 的延长线于点 ,连结 .
(1)求证: 是 的切线;
(2)设 交 于点 ,若 , ,求线段 的长;
(3)在(2)的条件下,求阴影部分的面积.
为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在 处测得灯塔 在北偏东 方向上,海监船继续向东航行1小时到达 处,此时测得灯塔 在北偏东 方向上.
(1)求 处到灯塔 的距离;
(2)已知灯塔 的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?