某校数学课题小组了解到:6个牛奶盒经过工艺处理可以制作成一个卷纸。为了解市民节约和环保意识,该课题小组调查了本市100户经常饮用牛奶的家庭对牛奶的处理方式,并制成如下统计图。
(1)这100户家庭中有多少户扔掉牛奶盒?
(2)如果该市有1万户经常饮用牛奶的家庭,请估算扔掉牛奶盒的家庭有多少户?
(3)若(2)中这1万户家庭每户一年平均饮用90盒牛奶,请估算一年扔掉的牛奶盒可以制作成成多少个卷纸?
先化简,再求值:
3xy
-[5xy
-(4xy
-3)+2x
y
],其
中x=-3,y=2
计算:
如图3,已知点、点
分别在
的边上,请根据下列语句画出图形:
(1)作的余角
;
(2)作射线与
相交于点
;
(3)取的中点
,连接
.
如图,在平面直角坐标系xOy中, 正方形OABC的边长为2cm, 点A、C分别在y轴的负半轴和x轴的正半轴上, 抛物线y=a+bx+c经过点A、B,最低点为M,且
=
(1)求此抛物线的解析式.,并说明这条抛物线是由抛物线y=a怎样平移得到的。
(2)如果点P由点A开始沿着射线AB以2cm/s的速度移动, 同时点Q由点B开始沿BC边以1cm/s的速度向点C移动,当其中一点到达终点时运动结束.
①在运动过程中,P、Q两点间的距离是否存在最小值,如果存在,请求出它的最小值。
②当PQ取得最小值时, 在抛物线上是否存在点R, 使得以P、B、Q、R为顶点的四边形是梯形? 如果存在, 求出R点的坐标, 如果不存在, 请说明理由.
如图(1),在地面A、B两处测得地面上标杆PQ的仰角分别为30°、45°, 且测得AB=3米,求标杆PQ的长
(2)在数学学习中要注意基本模型的应用,如图(2),是测量不可达物体高度的基本模型:在地面A、B两处测得地面上标杆PQ的仰角分别为,且测得AB=a米。
设PQ=h米,由PA-PB=a可得关于h的方程,解得h=
(3)请用上述基本模型解决下列问题:如图3,斜坡AP的倾斜角为15°,在A处测得Q的仰角为45°,要测量斜坡上标杆PQ的高度,沿着斜坡向上走10米到达B,在B处测得Q的仰角为60°,求标杆PQ的高。(结果可含三角函数)