如图所示,正方形导线框abcd的质量为m、边长为l,导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向里,磁场上、下两个界面水平距离为l.已知cd边刚进入磁场时线框恰好做匀速运动.重力加速度为g.
(1)求cd边刚进入磁场时导线框的速度大小;
(2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率;
(3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导线框克服安培力所做的功.
如图所示,一小球自平台上水平抛出,恰好无碰撞的落在临近平台的一倾角为 α = 53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h=0.8m,g = 10m/s2,sin53°= 0.8,cos53°= 0.6,则
(1)小球水平抛出的初速度v0是多少?
(2)斜面顶端与平台边缘的水平距离s是多少?
(3)若斜面顶端高H = 20.8m,则小球离开平台后经多长时间t到达斜面底端
已知一颗人造卫星在半径为R的某行星上空绕该行星做匀速圆周运动,经过时间t,卫星运动的弧长为s,卫星与行星的中心连线扫过的角度是θ弧度。(已知万有引力常量为G)求:
(1)人造卫星距该行量表面的高度h;
(2)该行量的质量M;
(3)该行量的第一宇宙速度v1。
如图所示,小球在外力作用下,由静止开始从A点出发做匀加速直线运动,到B点时撤去外力.然后,小球冲上竖直平面内半径为R的光滑半圆环,恰能通过圆轨道最高点C,到达最高点C后水平抛出,最后落回到原来的出发点A处。试求:
(1)小球运动到C点时的速度;
(2)A、B之间的距离。
如图所示,有一条渡船正在渡河,河宽为400m,渡船在静水中的速度是v1=4m/s,水的流速是v2=3m/s,怎样开船过河所用时间最短?最短时间为多少?所行驶的位移为多大?
如图所示,在足够长的光滑水平轨道上静止三个小木块A、B、C,质量分别为mA=1kg,mB=1kg,mC=2kg,其中B与C用一个轻弹簧固定连接,开始时整个装置处于静止状态;A和B之间有少许塑胶炸药,A的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J转化为A和B沿轨道方向的动能,A和B分开后,A恰好在BC之间的弹簧第一次压缩到最短时追上B,并且在碰撞后和B粘到一起。求:弹簧弹性势能的最大值。