如图所示,在足够长的光滑水平轨道上有三个小木块A、B、C,质量分别为mA、mB、mC,且;mA=mB =" 1.Okg" ,mc = 2.O kg,其中B与C用一个轻弹簧拴接在一起,开始时整个装置处于静止状态.A和B之间有少许塑胶炸药,A的左边有一个弹性挡板.现在引爆塑胶炸药,若炸药爆炸产生的能量中有E=9.0J转化为A和B的动能,A和B分开后,A恰好在B、C之间的弹簧第一次恢复到原长时追上B,并且与B发生碰撞后粘在一起.忽略小木块和弹性挡板碰撞过程中的能量损失.求:
(1) 塑胶炸药爆炸后瞬间A与B的速度各为多大?
(2) 在A追上B之前弹簧弹性势能的最大值;
(3) A与B相碰以后弹簧弹性势能的最大值.
如图所示,足够长的光滑平行金属导轨MN、PQ与水平面成θ=30°角放置,一个磁感应强度B=1.00T的匀强磁场垂直穿过导轨平面,导轨上端M与P间连接阻值为R=0.30Ω的电阻,长L=0.40m、电阻r=0.10Ω的金属棒ab与MP等宽紧贴在导轨上,现使金属棒ab由静止开始下滑,其下滑距离与时间的关系如表所示,导轨电阻不计,g=10m/s2
求:(1)在0.4s时间内,通过金属棒ab截面的电荷量
(2)金属棒的质量
某小型实验水电站输出功率是20 kW,输电线路总电阻是5 Ω.
(1)若采用380 V输电,求输电线路损耗的功率.
(2)若改用5000 V高压输电,用户端利用n1∶n2=22∶1的变压器降压,求用户得到的电压.
如图所示,水平放置的M、N两平行板相距为d=0.50m,板长为L=1m,,两板间有向下的匀强电场,场强E=300.0N/C,紧靠平行板右侧边缘的 xoy直角坐标系以N板右端为原点,在xoy坐标系的第一象限内有垂直纸面向外的匀强磁场,磁感强度B=×10-2T,磁场边界OA与x轴夹角∠AOx=60°,现有比荷为
×106C/kg的带电粒子(重力不计),沿靠近M板的水平线垂直电场方向进入电场,离开电场后垂直于OA边界进入磁场区域,
求:(1)带电粒子进入电场时的初速度v0;(2)带电粒子从进入电场到离开磁场的总时间。
如图甲所示,竖直平面内的坐标系xoy内的光滑轨道由半圆轨道OBD和抛物线轨道OA组成,OBD和OA相切于坐标原点O点,半圆轨道的半径为R , 一质量为m的小球(可视为质点)从OA轨道上高H处的某点由静止滑下。(1)若小球从H=3R的高度静止滑下,求小球刚过O点时小球对轨道的压力;
(2)若用力传感器测出滑块经过圆轨道最高点D时对轨道的压力为F,并得到如图乙所示的压力F与高度H的关系图象,取g=10m/s2。求滑块的质量m和圆轨道的半径R的值。
在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y=2.5(kx+2
/3)单位米,式中K=1m-1。将一光滑小环套在该金属杆上,并从x=0处以v0=5m/s的初速度沿杆向下运动,取g=10m/s2,则 (1)当小环运动到x=
/3米时的速度大小为多少? (2)该小环在x轴方向能达到的最远距离是多少?