口袋中装有2个小球,它们分别标有数字
和
;
口袋中装有3个小球,它们分别标有数字
,
和
.每个小球除数字外都相同.甲、乙两人玩游戏,从
两个口袋中随机地各取出1个小球,若两个小球上的数字之和为偶数,则甲赢;若和为奇数,则乙赢.这个游戏对甲、乙双方公平吗?请说明理由.
已知在四边形ABCD中,(1)求
的长;
已知抛物线y=ax+bx+c与
轴交于
两点,若
两点的横坐标分别是一元二次方程
的两个实数根,与
轴交于点
(0,3),
(1)求抛物线的解析式;
(2)在此抛物线上求点
,使
.
今年北京市大规模加固中小学校舍,房山某中学教学楼的后面靠近一座山坡,坡面上是一块平地,如图所示.,斜坡
米,坡度i=
,为防止山体滑坡,保障学生安全,学校决定不仅加固教学楼,还对山坡进行改造.经地质人员勘测,当坡角不超过
时,可确保山体不滑坡,改造时保持坡脚
不动,从坡顶
沿
削进到
处,问
至少是多少米.(结果保留根号)
如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D. 点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s)。(1)当x为何值时,PQ⊥AC,x为何值时,PQ⊥AB;
(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;
(3)当0<x<2时,求证:AD平分△PQD的面积。
在直角坐标系XOY中,二次函数图像的顶点坐标为,且与x轴的两个交点间的距离为6.
(1)求二次函数解析式;
(2)在x轴上方的抛物线上,是否存在点Q,使得以点Q、A、B为顶点的三角形与△ABC相似?如果存在,请求出Q点的坐标,如果不存在,请说明理由。