(本小题满分16分)
已知椭圆的左、右顶点分别A、B,椭圆过点(0,1)且离心率
.
(1)求椭圆的标准方程;
(2)过椭圆上异于A,B两点的任意一点P作PH⊥轴,H为垂足,延长HP到点Q,且PQ=HP,过点B作直线
轴,连结AQ并延长交直线
于点M,N为MB的中点,试判断直线QN与以AB为直径的圆O的位置关系.
已知向量m=(2sinx,cosx),n=(cosx,2cosx),定义函数f(x)=m·n-1.
(1)求函数f(x)的最小正周期;
(2)确定函数f(x)的单调区间、对称轴与对称中心.
如图,已知抛物线的焦点为F
过点
的直线交抛物线于A
,B
两点,直线AF,BF分别与抛物线交于点M,N
(1)求的值;
(2)记直线MN的斜率为,直线AB的斜率为
证明:
为定值
如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点
(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC
已知椭圆:
与
正半轴、
正半轴的交点分别为
,动点
是椭圆上任一点,求
面积的最大值。
已知矩阵,向量
,求向量
,使得