某商场准备在伦敦奥运会期间举行促销活动.根据市场行情,该商场决定从3种品牌的服装类商品、2种品牌的家电类商品、4种品牌的日用类商品中,任选出3种商品进行促销活动.
(Ⅰ)求选出的3种商品中至少有一种是日用类商品的概率;
(Ⅱ)商场对选出的家电类商品采用的促销方案是有奖销售,即在该类商品成本价的基础上每件提高180元作为售价销售给顾客,同时给该顾客3次抽奖的机会,若中奖一次,就可以获得一次奖金.假设该顾客每次抽奖时获奖的概率都是,每次中奖与否互不影响,且每次获奖时的奖金数额都为
元,求顾客购买一件此类商品时中奖奖金总额
的分布列和数学期望
,并以此测算
至多为多少时,此促销方案使商场不会亏本?
某校高三某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(1)求分数在[50,60)的频率及全班人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
已知函数.
(1)若从集合中任取一个元素
,从集合
中任取一个元素
,求方程
有两个不相等实根的概率;
(2)若是从区间
中任取的一个数,
是从区间
中任取的一个数,求方程
没有实根的概率.
已知函数,其中
.
(1)若在
处取得极值,求
的值;
(2)求的单调区间;
(3)若的最小值为1,求
的取值范围.
已知是椭圆
的左、右焦点,过点
作
倾斜角为的动直线
交椭圆于
两点.当
时,
,且
.
(1)求椭圆的离心率及椭圆的标准方程;
(2)求△面积的最大值,并求出使面积达到最大值时直线
的方程.
已知函数.
(1)解关于的不等式
;
(2)若对,
恒成立,求
的取值范围.