游客
题文

六一儿童节,爸爸带着儿子小宝去方特欢乐世界游玩,进入方特大门,看见游客特别多,小宝想要全部玩完所有的主题项目是不可能的.
(1)于是爸爸咨询导游后,让小宝上午先从A:太空世界;B:神秘河谷;C:失落帝国中随机选择两个项目,下午再从D:恐龙半岛,E:西部传奇;F:儿童王国;G:海螺湾.随机选择三个项目游玩,请用列举法或树形图说明当天小宝符合上述条件的所有可能的选择方式(用字母表示).
(2)在(1)问的选择方式中,求小宝恰好上午选中A:太空世界,同时下午选中G:海螺湾这两个项目的概率.

科目 数学   题型 解答题   难度 中等
知识点: 利用频率估计概率
登录免费查看答案和解析
相关试题

先化简,再从 - 1 、2、3、4中选一个合适的数作为 x 的值代入求值.

( x 2 - 2 x x 2 - 4 x + 4 - 4 x - 2 ) ÷ x - 4 x 2 - 4

已知二次函数 y = a x 2 + bx + c ( a > 0 )

(1)若 a = 1 b = - 2 c = - 1

①求该二次函数图象的顶点坐标;

②定义:对于二次函数 y = p x 2 + qx + r ( p 0 ) ,满足方程 y = x x 的值叫做该二次函数的"不动点".求证:二次函数 y = a x 2 + bx + c 有两个不同的"不动点".

(2)设 b = 1 2 c 3 ,如图所示,在平面直角坐标系 Oxy 中,二次函数 y = a x 2 + bx + c 的图象与 x 轴分别相交于不同的两点 A ( x 1 0 ) B ( x 2 0 ) ,其中 x 1 < 0 x 2 > 0 ,与 y 轴相交于点 C ,连结 BC ,点 D y 轴的正半轴上,且 OC = OD ,又点 E 的坐标为 ( 1 , 0 ) ,过点 D 作垂直于 y 轴的直线与直线 CE 相交于点 F ,满足 AFC = ABC FA 的延长线与 BC 的延长线相交于点 P ,若 PC PA = 5 5 a 2 + 1 ,求二次函数的表达式.

四边形 ABCD O 的圆内接四边形,线段 AB O 的直径,连结 AC BD .点 H 是线段 BD 上的一点,连结 AH CH ,且 ACH = CBD AD = CH BA 的延长线与 CD 的延长线相交于点 P

(1)求证:四边形 ADCH 是平行四边形;

(2)若 AC = BC PB = 5 PD AB + CD = 2 ( 5 + 1 )

①求证: ΔDHC 为等腰直角三角形;

②求 CH 的长度.

如图所示,在平面直角坐标系 Oxy 中,等腰 ΔOAB 的边 OB 与反比例函数 y = m x ( m > 0 ) 的图象相交于点 C ,其中 OB = AB ,点 A x 轴的正半轴上,点 B 的坐标为 ( 2 , 4 ) ,过点 C CH x 轴于点 H

(1)已知一次函数的图象过点 O B ,求该一次函数的表达式;

(2)若点 P 是线段 AB 上的一点,满足 OC = 3 AP ,过点 P PQ x 轴于点 Q ,连结 OP ,记 ΔOPQ 的面积为 S ΔOPQ ,设 AQ = t T = O H 2 - S ΔOPQ

①用 t 表示 T (不需要写出 t 的取值范围);

②当 T 取最小值时,求 m 的值.

如图所示,已知正方形 OEFG 的顶点 O 为正方形 ABCD 对角线 AC BD 的交点,连接 CE DG

(1)求证: ΔDOG ΔCOE

(2)若 DG BD ,正方形 ABCD 的边长为2,线段 AD 与线段 OG 相交于点 M AM = 1 2 ,求正方形 OEFG 的边长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号