据某气象中心观察和预测:发生于
地的沙尘暴一直向正南方向移动,其移动速度
(km/h)与时间
(h)的函数图象如图所示.过线段
上一点
作横轴的垂线
,梯形
在直线
左侧部分的面积即为
h内沙尘暴所经过的路程
(km).
(1)当
时,求
的值;
(2)将s随
变化的规律用数学关系式表示出来;
(3)若
城位于
地正南方向,且距
地650km,试判断这场沙尘暴是否会侵袭到
城.如果会,在沙尘暴发生后多长时间它将侵袭到
城?如果不会,请说明理由.
如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字,现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).
(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;
(2)李刚为甲、乙两人设计了一个游戏:记s=x+y.当s<6时,甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?
(3)请你利用两个转盘,设计一个公平的游戏规则.
如图,在平面直角坐标系xOy中,抛物线C1:y=a(x-
)2+h分别与x轴、y轴交于点A(1,0)和点B(0,-2),将线段AB绕点A逆时针旋转90°至AP.
(1)求点P的坐标及抛物线C1的解析式;
(2)将抛物线C1先向左平移2个单位,再向上平移1个单位得到抛物线C2,请你判断点P是否在抛物线C2上,并说明理由.
如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.
(1)弦AB= (结果保留根号);
(2)当∠D=20°时,求∠BOD的度数.
已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5).
(1)求该函数的关系式;
(2)求该函数图象与坐标轴的交点坐标.
如图,在△ABC中,
(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);
(2)若△ABC是直角三角形,两直角边分别为6,8,求它的外接圆半径.