某大学为调查来自南方和北方的同龄大学生的身高差异,从2011级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,数据如下(单位:cm): 南方:158,170,166,169,180,175,171,176,162,163;北方:183,173,169,163,179,171,157,175,178,166.
(Ⅰ)根据抽测结果,画出茎叶图,并根据你画的茎叶图,对来自南方和北方的大学生的身高作比较,写出两个统计结论;
(Ⅱ)若将样本频率视为总体的概率,现从来自南方的身高不低于170的大学生中随机抽取3名同学,求其中恰有两名同学的身高低于175的概率.
假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
x |
2 |
3 |
4 |
5 |
6 |
y |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
若由资料可知y对x呈线性相关关系。试求:
(1)线性回归方程;
(2)估计使用年限为10年时,维修费用是多少?
已知复数z="(2+i)(i-3)+4-2i;"
(1)求复数z的共轭复数及|
|;
(2)设复数z1=(a2-2a)+ai是纯虚数,求实数a的值
已知函数,若函数
的最小值是
,
且对称轴是
(1)设求
的值;
(2)在(1)条件下求在区间
的最小值.
已知集合A=x|x>a
,集合B=
.若B
A,则实数a的取值范围是a多少?
已知函数f(x)=x+,且f(1)=2.
(1)求m;
(2)判断f(x)的奇偶性;
(3)函数f(x)在(1,+∞)上是增函数还是减函数?并证明.