如图,在平面直角坐标系中,点C在x的正半轴上,点A在y轴的正半轴上,且OA=7,OC=18,现将点C向上平移7个单位长度再向左平移4单位长度,得到对应点B。
(1)求点B的坐标及四边形ABCO的面积;
(2)若点P从点C以2个单位长度/秒的速度沿CO方向移动,同时点Q从点O以每秒1单位长度的速度沿OA方向移动,设移动的时间为t秒(0<t<7),四边形OPBA与△OQB的面积分别记为S四边形OPBA,S△OQB。
①用含t的式子表示
②是否存在一段时间,使 < S△OQB,若存在,求出t的取值范围,若不存在,试说明理由。
在△ABC中,BC=24cm,外心O到BC的距离为5cm,求△ABC的外接圆半径.
已知Rt△ABC的两直角边为a和b,且a,b是方程x2﹣3x+1=0的两根,求Rt△ABC的外接圆面积.
△ABC在直角坐标系的位置如图所示,按要求解答
(1)将△ABC绕O点旋转180°后得到△A1B1C1,请画出△A1B1C1
(2)在图中画出△ABC的外接圆M,并在图中标出M的坐标.
二次函数y=ax2+bx+c过点A、B两点(A左B右),且分布在y轴两侧,且OA、OB的长是方程x2﹣5x+4=0的两根,且OA>OB,与y轴交于点C(0,4).
(1)求4a﹣2b+c的值;
(2)连接AC、BC,P是线段AB上一动点,且AP=m,过点P作PM∥AC,交BC于M,当m为何值时,S△PCM的面积最大,并求出这个最大值;
(3)△ABC外接圆的面积是.(直接写出答案,结果保留π)
在如图所示的平面直角坐标系中,已知点A(2,4),B(4,2).
(1)在平面直角坐标系中,我们把横坐标、纵坐标都为整数的点称为整数点,请在第一象限内求作一个整数点C,使得AC=BC,且AC的长为小于4的无理数,则C点的坐标是,△ABC的面积是;
(2)试求出△ABC外接圆的半径.