某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时血液中含药量最高,达到每毫升6微克,接着就逐步衰减,10小时后血液中含药量为每毫升3微克,每毫升血液中含药量(微克)随时间
(小时)的变化如图所示,那么成年人按规定剂量服药后:
(1)与
之间的函数关系式.
(2)如果每毫升血液中含药量在4微克或4微克以上时,治疗疾病才是有效的,那么这个有效时间是多长?
计算:
在正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;②联结三个格点,使之构成直角三角形,小华在左边的正方形网格中作出了Rt△ABC,请求出斜边AC的长.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,使三个网格中的直角三角形互不全等,并分别求出这三个直角三角形的斜边长.
如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A落在点F处,折痕为MN,求线段CN的长.
某水果店以每千克2元的价格新进一批水果,在市场销售中发现:此种水果的日销售量y(单位:千克)是销售单价x(单位:元/千克)的反比例函数,且.已知当销售单价定为3元/千克时,日销售量恰好为40千克.
(1) 求出y与x的函数关系式;
(2) 为了避免该水果库存的积压,水果店经理确定了日销售量不少于20千克且日销售利润不低于60元的销售方案,求出此时销售单价的范围.
解:
已知,如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积。