游客
题文

巴南区为了贯彻落实“森林重庆”,深入开展“绿化长江—重庆行动”。现决定对本区培育种植树苗的农民实施政府补贴,规定每种植一亩树苗一次性补贴农民若干元,随着补贴数额的不断增大,生产规模也不断增加,但每亩树苗的收益会相应降低。经调查,种植亩数y(亩)、每亩树苗的收益z(元)与补贴树额x(元)之间的一次函数关系如下表:

(1)分别求出政府补贴政策实施后种植亩数y、每亩树苗的收益z与政府补贴数额x之间的函数关系式;
(2)要使我区种植树苗的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值和此时种植的亩数;(总收益=种植亩数每亩树苗的收益)
(3)在取得最大收益的情况下,经市场调查,培育种植水果类树苗经济效益更好,今年该地区决定用种植树苗总面积m﹪的土地种植水果类树苗,因环境和经济等因素的制约,种植水果类树苗的面积不超过300亩 .经测算,种植水果类树苗需用的支架、塑料膜等材料每亩费用为2700元,此外还需购置喷灌设备,这项费用(元)与种植水果类树苗面积(亩)的平方成正比例,比例系数为9.预计今年种植水果类树苗后的这部分土地的收益比没种植前的收益每亩增加了7500元,这样,该地区今年因种植水果类树苗而增加的收益(扣除材料费和设备费后)共570000元.求m的值.
(结果精确到个位,参考数据:

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

(1)如图,AB、CD相交于O点,∠AOC=(2x﹣10)°,∠DOB=(x+25)°,求∠AOD的度数.
(2)解方程:

如图,已知直线AB、CD交于点O,且∠1:∠2=2:3,∠AOC=60°,求∠2的度数.

数学老师到菜市场买菜,发现若把10千克的菜放在某秤上,秤的指针盘上的指针转了180°,于是老师在学完一元一次方程和角的相关知识后给学生提出了两个问题:
(1)老师把6千克的菜放在该秤上,指针转过多少度?
(2)若刘大妈第一次把若干千克的菜放在秤上,通过指针盘度数发现与自己所需数量还差一些,于是再放了1千克的菜上去,发现前、后两次指针转过的角度恰好互余.求刘大妈第一次放多少千克菜在秤盘上?

如图,AB与CD相交于O点,∠1=50°,则∠2=

如图,直线AB与CD相交于O,OE平分∠AOB,OF平分∠COD.

(1)图中与∠COA互补的角是;(把符合条件的所有角都写出来)
(2)如果∠AOC=35°,求∠EOF的度数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号