游客
题文

如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的
延长线交线段BC于点P,连AP、AG.

(1)求证:△AOG≌△ADG;
(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;
(3)当∠1=∠2时,求直线PE的解析式.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

已知:如图, AF平分∠BAC,BC⊥AF, 垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.

(1)求证:AB=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.

下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y+2)(y+6)+4(第一步)
= y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.

A.提取公因式 B.平方差公式
C.两数和的完全平方公式 D.两数差的完全平方公式

(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________.
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.

如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC、BD,且AC=BD。若A到河岸CD的中点的距离为500米.

(1)牧童从A处放牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短? 用尺规作图在图中画出来
(2)最短路程是多少?

已知:如图,AB=AC,AE=AD,点D、E分别在AB、AC上.求证:∠B=∠C.

分解因式: 2a3-12a2+18a;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号