游客
题文

某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中.准备在形如Rt的四个全等三角形内种植红色花草,在形如Rt△EMH的四个全等三角形内种植黄色花草,在正方形内种植紫色花草,每种花草的价格如下表:

品种
红色花草
黄色花草
紫色花草
价格(元/米2
60
80
120

的长为米,正方形的面积为平方米,买花草所需的费用为元,解答下列问题:
(1)之间的函数关系式为                
(2)求之间的函数关系式,并求所需的最低费用是多少元;
(3)当买花草所需的费用最低时,求的长.

科目 数学   题型 解答题   难度 较难
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

【原创题】我校数学兴趣小组为了解泌园牌净水机的销售情况,对我市泌园牌净水机专卖店第一季度A、B、C、D四种型号的销量做了统计,绘制成如下两幅统计图(均不完整)。

(1)该店第一季度售出泌园牌净水机共多少台?
(2)把两幅统计图补充完整;
(3)若该专卖店计划订购这四款型号泌园牌净水机900辆,求C型泌园牌净水机订购多少辆?

【原创题】先化简,再求值,其中x=

如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式,已知球网与O点的水平距离为9m,球网高度为2.43m,球场另一边的底线距O点的水平距离为18m.

(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出底线?请说明理由;
(3)若球一定能越过球网,且刚好落在底线上,求h的值.

【改编题】已知:如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC边相切于点D,连接AD.

(1)求证:AD是∠BAC的平分线;
(2)若AC=3,tanB=,求⊙O的半径.

【改编题】如图(1),在等边的顶点B、C处各有一只蜗牛,它们同时出发△ABC分别以每分钟1各单位的速度油B向C和由C向A爬行,其中一只蜗牛爬到终点s时,另一只也停止运动,经过t分钟后,它们分别爬行到D,P处,请问:
(1)在爬行过程中,BD和AP始终相等吗?为什么?
(2)问蜗牛在爬行过程中BD与AP所成的∠DQA大小有无变化?请证明你的结论.
(3)若蜗牛沿着BC和CA的延长线爬行,BD与AP交于点Q,其他条件不变,如图(2)所示,蜗牛爬行过程中的∠DQA大小变化了吗?若无变化,请证明.若有变化,请直接写出∠DQA的度数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号