已知数列和
满足:
,
其中
为实数,
为正整数.
(Ⅰ)对任意实数,证明数列
不是等比数列;
(Ⅱ)对于给定的实数,试求数列
的前
项和
;
(Ⅲ)设,是否存在实数
,使得对任意正整数
,都有
成立? 若存在,求
的取值范围;若不存在,说明理由.
已知矩阵的逆矩阵
,求矩阵
的特征值.
已知函数若存在函数
使得
恒成立,则称
是
的一个“下界函数”.
(I) 如果函数为实数
为
的一个“下界函数”,求
的取值范围;
(Ⅱ)设函数试问函数
是否存在零点,若存在,求出零点个数;若不存在,请说明理由.
已知椭圆C:的离心率为
,右焦点到直线
的距离为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C交于A、B两点,且线段AB中点恰好在直线
上,求△OAB的面积S的最大值.(其中O为坐标原点).
已知数列满足
,其中
N*.
(Ⅰ)设,求证:数列
是等差数列,并求出
的通项公式
;
(Ⅱ)设,数列
的前
项和为
,是否存在正整数
,使得
对于
N*恒成立,若存在,求出
的最小值,若不存在,请说明理由.
已知甲箱中只放有x个红球与y个白球且
,乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别). 若甲箱从中任取2个球, 从乙箱中任取1个球.
(Ⅰ)记取出的3个球的颜色全不相同的概率为P,求当P取得最大值时的值;
(Ⅱ)当时,求取出的3个球中红球个数
的期望
.