提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般
情况下,大桥上的车流速度(单位:千米/小时)是车流密度
(单位:辆/千
米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度
为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:
当时,车流速度
是车流密度
的一次函数.
(Ⅰ)当时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,
单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)
已知集合,对于数列
中
.
(Ⅰ)若三项数列满足
,则这样的数列
有多少个?
(Ⅱ)若各项非零数列和新数列
满足首项
,
(
),且末项
,记数列
的前
项和为
,求
的最大值.
已知椭圆:
(
)过点
,且椭圆
的离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若动点在直线
上,过
作直线交椭圆
于
两点,且
为线段
中点,再过
作直线
.证明:直线
恒过定点,并求出该定点的坐标.
已知函数(
为自然对数的底数).
(Ⅰ)求曲线在点
处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)若存在使不等式
成立,求实数
的取值范围.
如图,已知平面
,四边形
是矩形,
,
,点
,
分别是
,
的中点.
(Ⅰ)求三棱锥的体积;
(Ⅱ)求证:平面
;
(Ⅲ)若点为线段
中点,求证:
∥平面
.
北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为分,规定测试成绩在
之间为体质优秀;在
之间为体质良好;在
之间为体质合格;在
之间为体质不合格.
现从某校高三年级的名学生中随机抽取
名学生体质健康测试成绩,其茎叶图如下:
(Ⅰ)试估计该校高三年级体质为优秀的学生人数;
(Ⅱ)根据以上名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取
名学生,再从这
名学生中选出
人.
(ⅰ)求在选出的名学生中至少有
名体质为优秀的概率;
(ⅱ)求选出的名学生中体质为优秀的人数不少于体质为良好的人数的概率.