已知抛物线的顶点(-1,-4)且过点(0,-3),直线l是它的对称轴。
(1)求此抛物线的解析式;
(2)设抛物线交x轴于点A、B(A在B的左边),交y轴于点C,P为l上的一动点,当△PBC的周长最小时,求P点的坐标。
(3)在直线l上是否存在点M,使△MBC是等腰三角形,若存在,直接写出符合条件的点M的坐标;若不存在请说明理由。
在数学学习和研究中经常需要总结运用数学思想方法。如类比、转化、从特殊到一般等思想方法,如下是一个案例,请补充完整。
题目:如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若,求
的值。
(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则易求的值是,
的值是
,从而确定的值是。
(2)类比延伸
如图2,在原题的条件下,若,则
的值是。(用含m的代数式表示),写出解答过程。
(3)拓展迁移
如图3,在梯形ABCD中,DC∥AB,点E是BC延长线上的一点,AE和BD相交于F,若,
(a>0,b>0),则
的值是。(用含a、b的代数式表示)写出解答过程。
某校为了深化课堂教学改革,现要配备一批A、B两种型号的小白板,经与销售商洽谈,搭成协议,购买一块A型比一块B型贵20元,且购5块A型和4块B型共需820元。
(1)求购买一块A型、B型各需多少元?
(2)根据该校实际情况,需购A、B两种型号共60块,要求总价不超5300元,且A型数量多于总数的,请通过计算,求出该校有几种购买方案?
(3)在(2)的条件下,学校为了节约开支,至少需花多少钱采购?
如图,已知⊙O的直径AB与弦CD相交于点E, AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥ BF;
(2)若⊙O的半径为5, cos∠BCD=,求线段AD的长.
如图,测量金沙湖BC的长度,现在距地面1500m高的A处的飞机上,测得正前方湖的两端B、C两点处的俯角分别为60°和45°,求湖长BC.(参考数据:)