如图所示,两条公路互相垂直,在南北方向的公路上,汽车甲以8m/s的速度从北向南匀速行驶;在东西方向的公路上,汽车乙以6m/s的速度,从东向西匀速行驶。当甲行至交叉路口时,乙行至路口以东100m处。问此后何时两车间距离最近?这个距离是多少?
如图,ABC三个木块的质量均为m。置于光滑的水平面上,BC之间有一轻质弹簧,弹簧的两端与木块接触可不固连,将弹簧压紧到不能再压缩时用细线把BC紧连,是弹簧不能伸展,以至于BC可视为一个整体,现A以初速沿BC的连线方向朝B运动,与B相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C与A,B分离,已知C离开弹簧后的速度恰为
,求弹簧释放的势能。
一半圆柱形透明物体横截面如图所示,地面AOB镀银,(图中粗线),O表示半圆截面的圆心,一束光线在横截面内从M点的入射,经过AB面反射后从N点射出,已知光线在M点的入射角为30,
MOA=60
,
NOB=30
。求
(i)光线在M点的折射角
(ii)透明物体的折射率
如图,一上端开口,下端封闭的细长玻璃管,下部有长l1=66cm的水银柱,中间封有长l2=6.6cm的空气柱,上部有长l3=44cm的水银柱,此时水银面恰好与管口平齐。已知大气压强为Po=76cmHg。如果使玻璃管绕低端在竖直平面内缓慢地转动一周,求在开口向下和转回到原来位置时管中空气柱的长度。封入的气体可视为理想气体,在转动过程中没有发生漏气。
如图,在区域I(0≤x≤d)和区域II(d≤x≤2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。一质量为m、带电荷量q(q>0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正向。已知a在离开区域I时,速度方向与x轴正方向的夹角为30°;此时,另一质量和电荷量均与a相同的粒子b也从p点沿x轴正向射入区域I,其速度大小是a的1/3。不计重力和两粒子之间的相互作用力。求
(1)粒子a射入区域I时速度的大小;
(2)当a离开区域II时,a、b两粒子的y坐标之差。
甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半。求甲乙两车各自在这两段时间间隔内走过的总路程之比。