已知sin(3π-α)=cos
,cos(π-α)=
·cos(π+β),且0<α<π,0<β<π,求sinα和cosβ.
(1)(本小题6分)在平面直角坐标系中,已知某点,直线
.求证:点P到直线
的距离
(2)(本小题7分)已知抛物线C: 的焦点为F,点P(2,0),O为坐标原点,过P的直线
与抛物线C相交于A,B两点,若向量
在向量
上的投影为n,且
,求直线
的方程.
(本小题12分)已知数列是公差为1的等差数列,
是公比为2的等比数列,
分别是数列
和
前n项和,且
(1)分别求,
的通项公式.
(2)若,求n的范围
(3)令,求数列
的前n项和
.
(本小题12分)六名学生需依次进行身体体能和外语两个项目的训练及考核 每个项目只有一次补考机会,补考不合格者不能进入下一个项目的训练(即淘汰),若每个学生身体体能考核合格的概率是,外语考核合格的概率是
,假设每一次考试是否合格互不影响.
(1)求某个学生不被淘汰的概率.
(2)求6名学生至多有两名被淘汰的概率
(3)假设某学生不放弃每一次考核的机会,用表示其参加补考的次数,求随机变量
的分布列和数学期望.
(本小题12分)在正三棱柱中,底面三角形ABC的边长为
,侧棱的长为
,D为棱
的中点.
①求证:∥平面
②求二面角的大小
③求点到平面
的距离.
(本小题12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知,
,且
∥
(1)求角B的大小
(2)若b=1,求△ABC面积的最大值