有甲、乙、丙三种规格的钢条,已知甲种根,乙种
根,丙种
根,共长
米;甲种
根,乙种
根,丙种
根共长
米,问甲
根,乙
根,丙
根共长多少?
随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.
(1)求甲、乙两队单独完成这项工程各需几个月?
(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)
有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边在同一直线
上,且点
与点
重合。现固定
,将
以每秒1个单位长度的速度在
上向右平移,当点
与点
重合时运动停止。设平移时间为
秒。
(1)当为秒时,
边恰好经过点
;当
为秒时,运动停止;
(2)在平移过程中,设
与
重叠部分的面积为
,请直接写出
与
的函数关系式,并写出
的取值范围;
(3)当停止运动后,如图2,
为线段
上一点,若一动点
从点
出发,先沿
方向运动,到达点
后再沿斜坡
方向运动到达点
,若该动点
在线段
上运动的速度是它在斜坡
上运动速度的2倍,试确定斜坡
的坡度,使得该动点从点
运动到点
所用的时间最短。(要求,简述确定点
位置的方法,但不要求证明。)
如图,抛物线交
轴于
两点(
的左侧),交
轴于点
,顶点为
。
(1)求点的坐标;
(2)求四边形的面积;
(3)抛物线上是否存在点,使得
,若存在,请求出点
的坐标;若不存在,请说明理由。
如图,等边△ABC中,点E、F分别是AB、AC的中点,P为BC上一点,连接EP,作等边△EPQ,连接FQ、EF。
(1)若等边的边长为20,且
,求等边
的边长;
(2)求证:。
如图,在平面直角坐标系中,一次函数的图象与反比例函数
的图象在第一象限内交于点
,与
轴交于点
,与
轴交于点
,
。
(1)求一次函数和反比例函数的解析式;
(2)若在轴上存在点
,使得
,求点
的坐标。