(本小题满分13分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求的值及
的表达式;
(Ⅱ)隔热层修建多厚时,总费用达到最小,并求最小值.
已知函数.
(1)若a=2,解不等式;
(2)若a>1,任意,求实数a的取值范围.
平面直角坐标系中,直线l的参数方程(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为
(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A,B两点,求|AB|.
如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.
(1)求证:△EFG为等腰三角形;
(2)求线段MG的长.
已知函数
(1)若当时,求
的单调区间;
(2)若求
的取值范围.
已知椭圆的左右焦点
,其离心率为
,点
为椭圆上的一个动点,
内切圆面积的最大值为
.
(1)求的值;
(2)若是椭圆上不重合的四个点,且满足
,求
的取值范围.