已知椭圆的左右焦点
,其离心率为
,点
为椭圆上的一个动点,
内切圆面积的最大值为
.
(1)求的值;
(2)若是椭圆上不重合的四个点,且满足
,求
的取值范围.
(本小题满分12分)某中学准备在“植树节”来临之际,组织学生进行植树活动,学校学生会对一批花苗的高度(单位:cm),进行抽样检测,检测结果的频率分布直方图如图所示.根据标准, 花苗高度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品.
(Ⅰ)用频率估计概率, 现从该批花苗中随机抽取一株, 求其为二等品的概率;
(Ⅱ)已知检测结果为一等品的有6株,现随机从三等品中有放回地连续取两次,每次取1株,求取出的两株花苗中恰有1件的长度在区间[30,35)上的概率.
(本小题满分12分)如图,在四棱锥中,底面是正方形,底面,, 点分别是
的中点,,且交于点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面⊥平面;
(本题满分12分)已知
(Ⅰ)求函数的最小正周期;
(Ⅱ)当时,方程有实数解,求实数的取值范围.
(本小题满分7分)选修4—5:不等式选讲
已知,且
,
(Ⅰ)求证:;
(Ⅱ)若不等式,对任意实数
恒成立,求实数
的取值范围.
(本小题满分7分)《选修4-4:坐标系与参数方程》
在直角坐标系中,直线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数).
(Ⅰ)求曲线的直角坐标方程.
(Ⅱ)设点是曲线
上的一个动点,求它到直线
的距离的最大值.