(本小题满分10分)选修41:几何证明选讲
如图,相交于A、B两点,AB是
的直径,过A点作
的切线交
于点E,并与BO1的延长线交于点P,PB分别与
、
交于C,D两点.
求证:(1)PA·PD=PE·PC; (2)AD=AE.
( (本小题满分12分)
设函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)若关于的方程
在区间
内恰有两个相异的实根,求实数
的取值范围.
( (本小题满分12分)
已知数列
(1)
(2)
( (本小题满分12分)
在四棱锥P-ABCD中,底面ABCD是矩形,PA=AD=4,AB=2,
PB=2,PD
=4
,E是PD的中点
(1)求证:AE⊥平面PCD;
(2)若F是线段BC的中点,求三棱锥F-ACE的体积。
(本小题满分12分)
已知向量=(sin2x,cosx),
=(
,2cosx)(x∈R),f(x)=
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=2,a=,B=
,求b的值。
(本小题满分10分)
圆的两条弦AB、CD交于点F,从F点引BC的平行线和直线
DA的延长线交于点P,再从点P引这个圆的切线,切点是Q
求证:PF=PQ.