某公司生产一种产品的固定成本是10000元,每生产一件产品需要另外投入80元,又知市场对这种产品的年需求量为800件,且销售收入函数,其中t是产品售出的数量,且
(利润=销售收入
成本).
(1)若x为年产量,y表示利润,求的解析式;
(2)当年产量为多少时,求工厂年利润的最大值?
在中,角
对的边分别为
,已知
.
(1)若,求
的取值范围;
(2)若,求
面积的最大值.
已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求
的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证
.
给定椭圆.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
如图,长方体中,
,G是
上的动点。
(l)求证:平面ADG;
(2)判断与平面ADG的位置关系,并给出证明;
(3)若G是的中点,求二面角G-AD-C的大小;
甲、乙两人各掷一次骰子(均匀的正方体,六个面上分别为1,2,3,4,5,6点),所得点数分别为x,y
(1)求x<y的概率;
(2)求5<x+y<10的概率。