如图,四边形ABCD中,点E在边CD上,连结AE、BE.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.
⑴用序号写出一个真命题(书写形式如:如果×××,那么××);并给出证明;
⑵用序号再写出三个真命题(不要求证明)
在一个不透明的盒子里装有除颜色外完全相同的黑、白两种球共40个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数 |
100 |
200 |
300 |
500 |
800 |
1000 |
3000 |
摸到白球的频数 |
65 |
178 |
302 |
481 |
599 |
1803 |
|
摸到白球的频率 |
0.65 |
0.62 |
0.593 |
0.604 |
0.601 |
0.599 |
(1)将数据表补充完整;
(2)请你估计: 随着实验次数的增加,摸到白球的频率特点是,这个频率将会接近(精确到0.1);
(3)假如你摸一次,你摸到白球的机会是;
(4)试估算盒子里黑、白两种颜色的球各有多少个?
如图7,在△ABC中,∠BAC=75°,AD、BE分别是BC、AC边上的高,AD=BD,求∠C和∠AFB的度数.
(9分)图6.1、6.2、6.3均为4×4的正方形网格,每个小正方形的边长均为1.请分别在这三个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.
![]() |
“海之南”水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共3200千克,全部售出后收入30400元.已知“妃子笑”荔枝每千克售价8元,“无核Ⅰ号”荔枝每千克售价12元,问该种植场今年这两种荔枝各收获多少千克?
(本题满分9分,第(1)小题4分,第(2)小题5分)
(1)解方程:;
(2)解方程组:
.