为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表:
每周做家务的时间(小时) |
0 |
1 |
1.5 |
2 |
2.5 |
3 |
3.5 |
4 |
人数(人) |
2 |
2 |
6 |
8 |
12 |
13 |
4 |
3 |
根据上表中的数据,回答下列问题:
(1)该班学生每周做家务劳动的平均时间应是多少小时?
(2)这组数据的中位数、众数分别是多少?
(3)请你根据(1)、(2)的结果,用一句话谈谈自己的感受.
如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形,若AB=2,求△ABC的周长.(结果保留根号).
如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.
(1)求证:OE=OF;
(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出
证明;如果不成立,请说明理由.
如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.
(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗,⊗,那么⊗”);
(2)选择(1)中你写出的一个命题,说明它正确的理由.
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连结DF.
(1)试证明AC=EF.
(2)求证:四边形ADFE是平行四边形.
如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.