已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半, 求:(1)动点M的轨迹方程;(2)若N为线段AM的中点,试求点N的轨迹.
如图,在直三棱柱ABC-A1B1C1中,底面为等腰直角三角形,AC⊥BC,点D是AB的中点,侧面BB1C1C是正方形. (1) 求证AC⊥B1C;(2)求二面角B-CD-B1平面角的正切值.
已知直线l经过A,B两点,且A(2,1),=(4,2). (1)求直线l的方程; (2)圆C的圆心在直线l上,并且与x轴相切于(2,0)点,求圆C的方程.
已知奇函数在上是增函数,且 ① 确定函数的解析式; ② 解不等式<0.
已知函数的递增区间是 ① 求的值。 ② 设,求在区间上的最大值和最小值。
定义在R上的偶函数在上递增,函数f(x)的一个零点为, 求满足的x的取值集合.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号