(本小题满分14分)
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
|
合计 |
|
|
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为,求
的分布列与期望.
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
已知函数在点
处的切线方程为
.
(Ⅰ)求的值;
(Ⅱ)求的单调区间.
已知函数f(x)的定义域为,且满足f(2)=1,f(xy)=f(x)+f(y),
(1)求f(1),f(4), f(8)的值;
(2)函数f(x)当时都有
.若
成立,求
的取值范围.
运货卡车以每小时x千米的速度匀速行驶120千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时12元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为,(α为参数).
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;
(2)设点Q是曲线C上一个动点,求它到直线l的距离的最小值.
变换T1是逆时针旋转的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2=
.
(1)求点P(2,1)在T1作用下的点P′的坐标;
(2)求函数y=x2的图象依次在T1,T2变换的作用下所得曲线的方程.