将一枚硬币抛起,使其自然下落,每抛两次作为一次实验,当硬币落定后,一面朝上,我们叫做“正”,另一面朝上,我们叫做“反”.
(1)一次实验中,硬币两次落地后可能出现几种情况图片来源,百度搜索→硬币.
(2)做20次实验,根据实验结果,填写下表.
结果 |
正正 |
正反 |
反反 |
频数 |
|
|
|
频率 |
|
|
|
(3)根据上表,制作相应的频数分布直方图.
(4)经观察,哪种情况发生的频率较大.
(5)实验结果为“正反”的频率是多大.
(6)5个同学结成一组,分别汇总其中两人,三人,四人,五人的实验数据,得到40次,60次,80次,100次的实验结果,将相应数据填入下表。
实验次数 |
40次 |
60次 |
80次 |
100次 |
“正反”的频数 |
|
|
|
|
“正反”的频率 |
|
|
|
|
(7)依上表,绘制相应的折线统计图.
(8)计算“正反”出现的概率.
(9)经过以上多次重复实验,所得结果为“正反”的频率与你计算的“正反”的概率是否相近.
为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手:
(1)一条直线把平面分成2部分;
(2)两条直线最多可把平面分成4部分;
(3)三条直线最多可把平面分成11部分…;
把上述探究的结果进行整理,列表分析:
直线条数 |
把平面分成部分数 |
写成和形式 |
1 |
2 |
1+1 |
2 |
4 |
1+1+2 |
3 |
7 |
1+1+2+3 |
4 |
11 |
1+1+2+3+4 |
… |
… |
… |
(1)当直线条数为5时,把平面最多分成部分,写成和的形式;
(2)当直线为n条时,把平面最多分成部分.
一个瓶子中装有一些豆子,不用数数的方法,还有几种方法估计瓶中豆子的数目?请写出至少两种方法.
某牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.已知该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行;受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.请你帮牛奶加工厂设计一种方案使这8吨鲜奶既能在4天内全部销售或加工完毕又能获得最大利润.
将连续的奇数1,3,5,7,9…排成如下的数表:
(1)十字框中的五个数的平均数与15有什么关系?
(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.
某顾客在商场看中了甲、乙两种冰箱,其中甲冰箱的价格为2100元,日均耗电量为1度;乙冰箱是新节能产品,价格为2220元,日均耗电量为0.5度.若这两种冰箱的效果相同且甲冰箱可以打折但乙冰箱不打折,请你就价格方面计算说明,甲冰箱至少打几折时购买比较合算?(假设:每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天.)